Navigation

  • Scipy lecture notes »
  • Collapse to compact view Collapse document to compact view
  • Edit Improve this page:
    Edit it on Github.

Examples for the mathematical optimization chapter¶

../../../_images/sphx_glr_plot_noisy_thumb.png

Noisy optimization problem

../../../_images/sphx_glr_plot_smooth_thumb.png

Smooth vs non-smooth

../../../_images/sphx_glr_plot_curve_fitting_thumb.png

Curve fitting

../../../_images/sphx_glr_plot_convex_thumb.png

Convex function

../../../_images/sphx_glr_plot_exercise_flat_minimum_thumb.png

Finding a minimum in a flat neighborhood

../../../_images/sphx_glr_plot_non_bounds_constraints_thumb.png

Optimization with constraints

../../../_images/sphx_glr_plot_1d_optim_thumb.png

Brent’s method

../../../_images/sphx_glr_plot_constraints_thumb.png

Constraint optimization: visualizing the geometry

../../../_images/sphx_glr_plot_compare_optimizers_thumb.png

Plotting the comparison of optimizers

../../../_images/sphx_glr_plot_exercise_ill_conditioned_thumb.png

Alternating optimization

../../../_images/sphx_glr_plot_gradient_descent_thumb.png

Gradient descent

Download all examples in Python source code: auto_examples_python.zip
Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery

This Page

  • Show Source

Quick search

Navigation

  • Scipy lecture notes »
  • Collapse to compact view Collapse document to compact view
  • Edit Improve this page:
    Edit it on Github.
© Copyright 2012,2013,2015,2016,2017,2018,2019,2020,2021,2022. Created using Sphinx 1.7.9.