Note
Click here to download the full example code
3.6.10.1. Measuring Decision Tree performanceΒΆ
Demonstrates overfit when testing on train set.
Get the data
from sklearn.datasets import load_boston
data = load_boston()
Train and test a model
from sklearn.tree import DecisionTreeRegressor
clf = DecisionTreeRegressor().fit(data.data, data.target)
predicted = clf.predict(data.data)
expected = data.target
Plot predicted as a function of expected
from matplotlib import pyplot as plt
plt.figure(figsize=(4, 3))
plt.scatter(expected, predicted)
plt.plot([0, 50], [0, 50], '--k')
plt.axis('tight')
plt.xlabel('True price ($1000s)')
plt.ylabel('Predicted price ($1000s)')
plt.tight_layout()
Pretty much no errors!
This is too good to be true: we are testing the model on the train data, which is not a mesure of generalization.
The results are not valid
Total running time of the script: ( 0 minutes 0.062 seconds)