Note
Click here to download the full example code
3.1.6.5. Multiple Regression¶
Calculate using ‘statsmodels’ just the best fit, or all the corresponding statistical parameters.
Also shows how to make 3d plots.
# Original author: Thomas Haslwanter
import numpy as np
import matplotlib.pyplot as plt
import pandas
# For 3d plots. This import is necessary to have 3D plotting below
from mpl_toolkits.mplot3d import Axes3D
# For statistics. Requires statsmodels 5.0 or more
from statsmodels.formula.api import ols
# Analysis of Variance (ANOVA) on linear models
from statsmodels.stats.anova import anova_lm
Generate and show the data
x = np.linspace(-5, 5, 21)
# We generate a 2D grid
X, Y = np.meshgrid(x, x)
# To get reproducable values, provide a seed value
np.random.seed(1)
# Z is the elevation of this 2D grid
Z = -5 + 3*X - 0.5*Y + 8 * np.random.normal(size=X.shape)
# Plot the data
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap=plt.cm.coolwarm,
rstride=1, cstride=1)
ax.view_init(20, -120)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
Multilinear regression model, calculating fit, P-values, confidence intervals etc.
# Convert the data into a Pandas DataFrame to use the formulas framework
# in statsmodels
# First we need to flatten the data: it's 2D layout is not relevent.
X = X.flatten()
Y = Y.flatten()
Z = Z.flatten()
data = pandas.DataFrame({'x': X, 'y': Y, 'z': Z})
# Fit the model
model = ols("z ~ x + y", data).fit()
# Print the summary
print(model.summary())
print("\nRetrieving manually the parameter estimates:")
print(model._results.params)
# should be array([-4.99754526, 3.00250049, -0.50514907])
# Peform analysis of variance on fitted linear model
anova_results = anova_lm(model)
print('\nANOVA results')
print(anova_results)
plt.show()
Out:
OLS Regression Results
==============================================================================
Dep. Variable: z R-squared: 0.594
Model: OLS Adj. R-squared: 0.592
Method: Least Squares F-statistic: 320.4
Date: Thu, 18 Aug 2022 Prob (F-statistic): 1.89e-86
Time: 10:40:00 Log-Likelihood: -1537.7
No. Observations: 441 AIC: 3081.
Df Residuals: 438 BIC: 3094.
Df Model: 2
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -4.5052 0.378 -11.924 0.000 -5.248 -3.763
x 3.1173 0.125 24.979 0.000 2.872 3.363
y -0.5109 0.125 -4.094 0.000 -0.756 -0.266
==============================================================================
Omnibus: 0.260 Durbin-Watson: 2.057
Prob(Omnibus): 0.878 Jarque-Bera (JB): 0.204
Skew: -0.052 Prob(JB): 0.903
Kurtosis: 3.015 Cond. No. 3.03
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
Retrieving manually the parameter estimates:
[-4.50523303 3.11734237 -0.51091248]
ANOVA results
df sum_sq mean_sq F PR(>F)
x 1.0 39284.301219 39284.301219 623.962799 2.888238e-86
y 1.0 1055.220089 1055.220089 16.760336 5.050899e-05
Residual 438.0 27576.201607 62.959364 NaN NaN
Total running time of the script: ( 0 minutes 0.053 seconds)