2.7.4.6. Optimization with constraints

An example showing how to do optimization with general constraints using SLSQP and cobyla.

../../../_images/sphx_glr_plot_non_bounds_constraints_001.png
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
x, y = np.mgrid[-2.03:4.2:.04, -1.6:3.2:.04]
x = x.T
y = y.T
plt.figure(1, figsize=(3, 2.5))
plt.clf()
plt.axes([0, 0, 1, 1])
contours = plt.contour(np.sqrt((x - 3)**2 + (y - 2)**2),
extent=[-2.03, 4.2, -1.6, 3.2],
cmap=plt.cm.gnuplot)
plt.clabel(contours,
inline=1,
fmt='%1.1f',
fontsize=14)
plt.plot([-1.5, 0, 1.5, 0, -1.5],
[ 0, 1.5, 0, -1.5, 0], 'k', linewidth=2)
plt.fill_between([ -1.5, 0, 1.5],
[ 0, -1.5, 0],
[ 0, 1.5, 0],
color='.8')
plt.axvline(0, color='k')
plt.axhline(0, color='k')
plt.text(-.9, 2.8, '$x_2$', size=20)
plt.text(3.6, -.6, '$x_1$', size=20)
plt.axis('tight')
plt.axis('off')
# And now plot the optimization path
accumulator = list()
def f(x):
# Store the list of function calls
accumulator.append(x)
return np.sqrt((x[0] - 3)**2 + (x[1] - 2)**2)
def constraint(x):
return np.atleast_1d(1.5 - np.sum(np.abs(x)))
optimize.minimize(f, np.array([0, 0]), method="SLSQP",
constraints={"fun": constraint, "type": "ineq"})
accumulated = np.array(accumulator)
plt.plot(accumulated[:, 0], accumulated[:, 1])
plt.show()

Total running time of the script: ( 0 minutes 0.040 seconds)

Gallery generated by Sphinx-Gallery